NAME:	
TEACHER:	

BAULKHAM HILLS HIGH SCHOOL

YEAR 11 HALF YEARLY EXAMINATION

2008

CHEMISTRY

GENERAL INSTRUCTIONS:

- Reading time 5 minutes.
- Working time 1½ hours.
- Write using blue or black pen.
- Draw diagrams using pencil.

Total marks - 60

SECTION I - 10 Marks

10 Multiple Choice questions worth one mark each.

SECTION 2 – 50 marks

- All questions are compulsory.
- Answer questions in allocated spaces.

Show all working

SECTION I

10 Multiple Choice Questions (10 marks)

Contains 10 multiple choice questions work 1 mark each. Select the best alternative and mark the appropriate space in the Answer Sheet.

- 1 The list which contains only metallic elements is:
 - (A) copper, lead, iron, chlorine
 - (B) aluminium, brass, silver, helium
 - (C) argon, silicon, magnesium, calcium
 - (D) sodium, beryllium, cobalt, lithium
- 2 A group of elements have the following properties:

Substance	Melting Point (°C)	Boiling Point (°C)	Relative Electrical Conductivity	Colour
W	300	1950	good	Silvery – white
Х	- 50	400	good	Silvery – white
Y	- 30	60	poor	Red – brown
Z	50	700	fair	Silvery – grey

The element which is a liquid at room temperature is:

- (A) W
- (B) X
- (C) Y
- (\mathbf{D}) Z
- 3 Dissolving salt in water is an example of which kind of change?
 - (A) A reversible physical change.
 - (B) An irreversible physical change.
 - (C) A reversible chemical change.
 - (D) An irreversible chemical change.
- 4 The decomposition of water into hydrogen and oxygen is an example of which kind of change?
 - (A) A reversible physical change.
 - (B) An irreversible physical change.
 - (C) A reversible chemical change.
 - (D) An irreversible chemical change.

5	A substance with a very high melting point the	hat can only	conduct	electrical	current	in	the
	molten state is most likely:						

- (A) A network covalent crystal.
- (B) A metallic crystal.
- (C) An ionic crystal.
- (D) A molecular crystal.
- The number of unshared (non-bonding) electron pairs around the central sulfur atom in the SF₄ molecule is:
 - (A) O
 - **(B)** 1
 - **(C)** 2
 - **(D)** 3
- A particular atom has 25 electrons, 25 protons, and 27 neutrons. Its atomic number and mass number, respectively are:
 - (A) 25 and 52
 - **(B)** 25 and 77
 - (C) 25 and 50
 - **(D)** 50 and 77
- 8 The chemical structure of a metal is best described as:
 - (A) a network of positive ions and electrons held together by magnetic attractions.
 - (B) a network of positive ions with delocalised electrons moving through the network.
 - (C) a network of positive and negative ions held together by electrostatic attractions.
 - (D) an array of metal atoms loosely bonded together.
- 9 In which of the following changes to the particles move closer together?
 - (A) Dissolving sugar in a cup of coffee.
 - (B) Condensation of stream.
 - (C) Melting of a block of chocolate.
 - (D) Evaporation of alcohol.
- Which of the following is *not* an assumption of the kinetic theory?
 - (A) Gases consist of tiny particles called molecules.
 - (B) Gas molecules are composed of at least two atoms.
 - (C) The molecules of a gas move in rapid, random, straight-line motion.
 - (D) In gases the particles are widely spaced.

	2 He 4.003 Helium	10	S.	20:18 Neon	18	Ϋ́	39.95	Argon	84	83.80	Krypton	1	ţ×,	1313	Xenon	98	25 E	[222.0]	ionav.			
۱	aune.	6	L,	19.00 Fluorine	1.7	ີວ	35.45	Chlorine	Br 35	79.90	Bromine	63	ე,⊢	126.0	Iodine	95	¥	[210.0]	Astaune			
		∞(-	16.00 Oxygen	14		32.07	Sulfur	% %	78.96	Selenium	5	75	107.6	Tellurium	10		[209.0]	rotolituii			
		7	Z,	14.01	3 2	그심	30.97	Phosphorus	33 As	74.92	Arsenic	i	ಗಕ	9.5	Antimony	00	8. <u>m</u>	209.0	องระเมติเก			
		9	_ ပ	12.01		4 :S	28.09	Silicon	&33 &33	72,64	Germanium	1	25	1101	110./ Illu	C	2 <u>2</u>	207.2	Lead			
		5	Ω	10.81			26.98	Aluminium	31 Ga	60 70	Gallium		9-1	12.	I 14.0 Indium		žΕ	204.4	Thallium	10		
V.L.Z		L						•	30	65.41	14.70	:	& <u>{</u>	3	LLZ.4 Cadmium	0	88 H	200.6	Mercury			
RI RMENTS			cot		=				29 Cu	73.55	CC.CO	-caldan	47	Ag,	IU/.y Silver		79 Au	197.0		111 Rg		
r THE			Symbol of element	•	Name of element				78 78 78	07 65	Nickel	THORES	946	2 ;	106.4		78 Pt	195.1	Platinum	110 Ds	[271]	Darmstadtium
PLF OF	. .	79	An	197.0	Cold				27	500	08.90	Condit	45	٠	102.9 Rhoding		77 Tr	192.2	Iridium	109 Mt	[268]	Meitnerium
ODIC TARIE		Atomic Number	-	Alomic Weight					26	20 22	55.85	IIOII	44	Кu	101.1	William I	%č	190.2	Osmium	108 Hs	[277]	Hassium
Oraga	remo	Atc		₹					25	IMIII 74 O 4	54.94	Manganese	43	Tc	[97.91]	TECHNICITION	75 Be	186.2	Rhenjum	107 Bh	[264]	Bohrium
									24	ָב ק	52.00	Chromium	42	Mo	95.94	Molybuenum	74 W	183.8	Tungsten	106 Sg	12,66	Scaborgium
									1											105 4G		
									222	11	47.87	Titanium	40	Ζτ	91.22	Zircontum	72	178.5	Hafnium	104 Bf	1261	Rutherfordium
									21	S	44.96	Scandium	39	×	88.91	Yttrium	57-71		Lanthanoids	89–103		Actinoids
		_	+ բ	9.012	Beryllium	12	Z Z	Z4.51 Magnesium	20	స్	40.08	Calcinm	38	Sr	87.62	Strontium	56	1373	Barium	88	13.767	Radium
	1 H 1.008	Hydrogen	ი; -	L1 6.941	Lithium	1	Na S	22.99 Sodium	19	×	39.10	Potassium	37	Rb	85.47	Rubidium	55	స్ట	Caesium	87	12221	Francium
										_						-						

			Г		
ī	Lu 175.0	Lutetium	CCF	Lr [262]	Lawrenciur
C	4X 5	Ytterbium		No No [259]	Nobelium
9	Par Tin	Thulium		101 Md [258]	Mendelevium
,	2 日 2	IO/3 Erbium		100 Fm [257]	Fermium
	67 H9 27	104.9 Holmium		99 Es [252]	Einsteinium
	% 5 5 5 6 6 7 6 7 7	L62.3 Dysprosium		98 Cf [251]	Californium
	35 13 13 13 13 13 13 13 13 13 13 13 13 13	158.9 Terbium		97 Bk F2471	Berkelium
	28;	157.3 Gadolinium		96 Cm 72471	Curium
	83 En	152.0 Europium		95 Am 12431	Americium
	62 Sm	150.4 Samarium	AMAZON III	94 Pu	Phitonium
	61 Pm	[145] Promethium		93 PP 1227	L2373.
	99 99 99	144.2 Neodymium		92 U	Uranium Uranium
-	59 Pr	140.9 Prascodymium		91 Pa	25 L.U Protactinium
•	58 Ce	140.1 Cerium		84.5 1.19	252.0 Thorium
Januarion	57 La	138.9 Lanthanum	Actinoids	89 Ac	[227] Actinium

For elements that have no stable or long-lived nuclides, the mass number of the nuclide with the longest confirmed half-life is listed between square brackets.

The International Union of Pure and Applied Chemistry Periodic Table of the Elements (October 2005 version) is the principal source of data. Some data may have been modified.

2007 HIGHER SCHOOL CERTIFICATE EXAMINATION Chemistry

DATA SHEET

Avogadro constant, N _A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at	: 100 kPa and	
	at 0°C (273.15 K)	22.71 L
	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	t 25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water	· ·······	$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

Some useful formulae

$$\mathrm{pH} = -\mathrm{log}_{10}[\mathrm{H}^+] \qquad \qquad \Delta H = -m\,C\,\Delta T$$

Some standard potentials

$K^+ + e^-$	_	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	~	Ba(s)	–2.91 V
$Ca^{2+} + 2e^{-}$	=	Ca(s)	-2.87 V
$Na^+ + e^-$	~	Na(s)	–2.71 V
$Mg^{2+} + 2e^{-}$	₹	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	~	Al(s)	-1.68 V
$Mn^{2+} + 2e^-$	\rightleftharpoons	Mn(s)	-1.18 V
H ₂ O + e ⁻	₩	$\frac{1}{2}$ H ₂ (g) + OH ⁻	-0.83 V
$Zn^{2+} + 2e^{-}$	~~	Zn(s)	-0.76 V
Fe ²⁺ + 2e ⁻	~_	Fe(s)	-0.44 V
$Ni^{2+} + 2e^-$	€	Ni(s)	-0.24 V
$Sn^{2+} + 2e^{-}$	\rightleftharpoons	Sn(s)	-0.14 V
Pb ²⁺ + 2e ⁻	=	Pb(s)	-0.13 V
$H^+ + e^-$	~	$\frac{1}{2}H_2(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	==	Cu(s)	0.34 V
$\frac{1}{2}$ O ₂ (g) + H ₂ O + 2e ⁻	₹	20H~	0.40 V
Cu ⁺ + e ⁻	₹	Cu(s)	0.52 V
$\frac{1}{2}I_2(s) + e^{-}$	~2	I_	0.54 V
$\frac{1}{2}I_2(aq) + e^-$		I-	0.62 V
Fe ³⁺ + e ⁻	~	Fe ²⁺	0.77 V
$Ag^+ + e^-$	/	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	~~	Br	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	==	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	$\stackrel{\longleftarrow}{}$	H ₂ O	1.23 V
$\frac{1}{2}\operatorname{Cl}_2(g) + e^-$	\rightleftharpoons	CI	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	₩	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\operatorname{Cl}_2(aq) + e^-$	<−	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	₩	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}F_2(g) + e^-$	←	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

NAME:	
TEACHER:	

BAULKHAM HILLS HIGH SCHOOL YEAR 11 HALF YEARLY EXAMINATION 2008 CHEMISTRY

MULTIPLE CHOICE ANSWER SHEET

SECTION I

Place a cross (X) in the box that corresponds to the best answer.

QUESTION	`A	В	С	D
1				
2				
3	:			
4				
5				
6				
7				
8				
9				
10				

Marks	
Section 1	/10
Section 2	/50
Total	/60

SECTION 2 (50 marks)

Contains 12 questions of variable length. Write your answers in the spaces provided.

E	STION 11 (4 marks)	35 1
w	a diagram to show the electronic structure of:	Mark
	a fluorine atom	1
	a fluoride ion	1
	\cdot	
	Give the name and formula of any ionic compound containing oxygen.	1
		_
	Give the name and formula of any covalent compound containing oxygen.	. 1

QUES	STION 12	(2 marks)	
Expla	in why some	elements have atoms with more than one mass number.	2
			, and the second
QUE	STION 13	(2 marks)	
Draw	the Lewis do	ot structure for:	
(a)	calcium ch	lloride CaCl ₂ .	1
(b)	ammonia l	NH ₃ .	1
QUE	STION 14	(3 marks)	
Desc	ribe example	es of chemical reactions for each of the following:	
(a)	a chemica	l reaction in which light is absorbed.	1
(b)	a chemica	l reaction that produces heat.	1
(b)	a chomica	TOWN MAN PROGRAMS MAN.	
	**************************************		· · · · · · · · · · · · · · · · · · ·

(b)

(c)

		Marks
(c)	a chemical reaction caused by electricity.	1
QUE	ESTION 15 (4 marks)	-
	Oxygen Hydrogen R	
(a)	Write a word and symbol equation for the reaction represented in the above diagram	. 2
	Word equation	_
	Symbol equation	

1

1

What name is given to the process causing decomposition?

Account for the differences in volumes of hydrogen and oxygen gas produced.

OURSTION TO TO MARKS	QUEST	ION 1	16 ((6	marks)
----------------------	--------------	-------	------	----	--------

Marks

(a) Draw and label the equipment that was used in the school laboratory to decompose a metal carbonate.

2

(b) In the above experiment, limewater was used to show when carbon dioxide gas was produced. The word equation for the reaction is:

limewater + carbon dioxide \rightarrow calcium carbonate + water Complete the symbol equation for the reaction.

+ _____ + ____ + ____

(c) A Lewis structure for copper carbonate is shown below:

Ca(OH)₂

$$\operatorname{Cu}^{2+} \left[\ddot{O} = C_{O}^{O} \right]^{2-1}$$

Describe the chemical bonding in copper carbonate.

2

(6 marks) **QUESTION 17** Marks The element molybdenum (Mo) has the following properties: 2610°C Melting Point Boiling Point 5560°C 10.2 g mL^{-1} Density **Electrical Conductivity** Good Both Malleable and Ductile Flexibility Using this information, answer the following questions. 1 In what physical state would molybdenum exist at room temperature? (a) 1 Would the element be classed as a metal or a non-metal? (b) 2 Would molybdenum float on water? Explain. (c) 1 Would molybdenum melt in a candle flame? (d) Molybdenum has been used as a filament material in electronic tubes and light (e) bulbs. What properties make it very suitable for this? 1

QUESTION 18 (4 marks)

F	ntaining a mixture of sand and salt water.
Describe, with experimentation the salt water.	al details, a method you would use to separate the sand

v grazimetrie analygie of	the mixture was carried out, and the following results
vere obtained.	the mixture was carried out, and the following results
nass of sand + salt water	+ beaker = 180.4 g
hass of beaker = 120.2 g hass of dried sand = 30.6	g
hass of dried salt $= 4.1 g$	
Calculate the % of sand and	d salt in the mixture.
· W SYCHALOWA	
7 TO F SAMELA A A A A A A A A A A A A A A A A A A	

QUESTION 19 (4 marks)

Complete the following table for four elements of your choice:

Element	A use of this element	Physical properties related to this use

QUESTION 20 (6 marks)

Marks

Six solid substances Q, R, S T, U and V (not their chemical symbols) were subjected to a series of physical tests. These are some of the results.

Solids	Electrical Conductivity (solid state)	Solubility in water	Heating in candle flame	Heating in hottest Bunsen Flame
Q	does not conduct	insoluble	melts	(not tested)
R	does not conduct	soluble	does not melt	does not melt
S	yes	insoluble	does not melt	melts
Т	does not conduct	insoluble	does not melt	does not melt
U	does not conduct	soluble	melts	(not tested)
V	does not conduct	insoluble	does not melt	does not melt

Melted Q did not conduct electricity.

R and U are both soluble in water and do not conduct in the solid state. However, the solution of R conducted electricity and the solution of U did not.

• When a specially hot flame was used both T and V melted. Molten T did not conduct electricity but molten V did.

On the basis of the above information, classify each substance as metallic, ionic, covalent molecular or covalent lattice structures.

Solid	Structure
Q	
R	
S	
Т	
U	
V	·

OUESTION	21	(5 marks)
-----------------	----	-----------

Some covalent compounds are molecular, others form covalent lattices.

(a) Give an example of each, and draw 2 dimensional diagrams which show the bonding in each of the substances you named. (Use at least 12 atoms in each diagram.)

(b)	What are the limitations of these models?	2

QUESTION 22 (5 marks)

The solubilities at 25° C of three white barium salts, in grams per 100 mL of water are:

	barium sulfate barium nitrate barium iodide	0.00025 10.1 220	
15 g of a white powder was prep Your task is to obtain a sample barium nitrate.	pared by missing 5.0 of pure barium su	Og of each of these t lphate and a sample	hree barium salts. of virtually pure
Write the method for the separat mixture.	tion process. Expl	ain at each stage wh	at happens to the
Political Control of the Management Control of the	, valid Miles Villa And		
			THE CONTRACT OF THE CONTRACT O
State And			
			NOTES AND THE PROPERTY AND ADDRESS AND ADD
AND THE PROPERTY OF THE PROPER		AUL MATTER TO THE TOTAL TH	

Year 11 ½ yearly Chemistry 2008 Answers

1. D 2. (B or C) 3.A 4.C 5.C 6.B 7.A 8.B 9.B 10.B

Q11. a)

b)

- c) both name and formula required for one mark.
- d) both the name and formula required for one mark.

12

mark	criteria
2	* reference to isotopes (varying numbers of neutrons)
	* mass number is the total number of protons plus neutrons in the nucleus.
1	One of the above.

13. a) (1 mk)

b) (1 mk)

- 14. a) eg photosynthesis, decomposition of AgBr etc. (1 mk)
 - b) explosion, burning of candle wax etc. (1 mk)
 - c) electrolysis of water etc. (1 mk)

15. a)

mark	criteria
2	* water → hydrogen + oxygen * 2H ₂ O → 2H ₂ + O ₂ (states not required)
1	One of the above.

15b) electrolysis (1mk)

15c) during decomposition, for every one molecule of O₂, two molecules of H₂ are released.(1mk)

1

(a) Draw and label the equipment that was used in the school laboratory to decompose a metal carbonate.

(b) In the above experiment, limewater was used to show when carbon dioxide gas was produced. The word equation for the reaction is:

limewater + carbon dioxide \rightarrow calcium carbonate + water

Complete the symbol equation for the reaction.

 $Ca(OH)_{2}$ (Ga) + CO_{2} (Ga) \rightarrow $Con CO_{3}(Ga)$ + CO_{2} (Ga)

(c) A Lewis structure for copper carbonate is shown below:

$$Cu^{2+} \begin{bmatrix} \ddot{O} = C \\ \ddot{O} = C \end{bmatrix}^{2-}$$

Describe the chemical bonding in copper carbonate.

Between Cu^{2+} and co_3^2 ions exists ionic bonding but within the co_3^2 ion there is covalent bonding.

QUES	STION 17 (6 marks)	Mark
The el	lement molybdenum (Mo) has the following prop	erties:
	Electrical Conductivity Good	°C g mL ⁻¹
Using	g this information, answer the following questions	
(a)	In what physical state would molybdenum exist	t at room temperature?
(b)	Would the element be classed as a metal or a no	
(c)	Would molybdenum float on water? Explain.	
	ho, as its density. that of water, at	is greater than 1.0 g/mL.
(d)	Would molybdenum melt in a candle flame?	1
٠	_no	
(e)	Molybdenum has been used as a filament m bulbs. What properties make it very suitable for	naterial in electronic tubes and light or this?
	electrical conductivity,	

O 18.a)

mark	criteria
2	* equipment – filter funnel, filter paper * sand is the residue on the filter paper * wash with tap water / distilled water
1	2 of the above

18.b) mass (sand + salt) =
$$60.2g$$

$$\%$$
 sand = 30.6/ 60.2 x 100 = 50.8% (1 mk) $\%$ salt = 4.1/60.2 x 100 = 6.8% (1 mk)

19. For each element, the use had to relate to the properties. Two properties were required for one mark.

(Chemical properties were accepted if they applied to the use eg: chlorine has antibacterial operties.)

20.

solid	structure
O	Covalent molecular
R	Ionic
S	Metallic
T	Network/ covalent lattice
U	Covalent molecular
V	ionic

lmark each = 6mbs.

Question 21

Correct examples of each + correct structure + correct description of bonding in each example	
Covalent molecular: Br, H,O, HCl,	
Covalent Lattice : SiO ₂ , SiC, C(diamond) Correct structure showing the bonds	
Correct description of covalent bonds and inter-molecular forces in each	
Correct example of each + correct structure of each OR Correct example of each + correct indication of bonding in each OR Correct structure of each + correct indication of bonding in each OR One correct example + structure + bonding	2 marks
Correct example of either one OR correct structure of either one OR correct indication of bonding in either one	1 mark

Question 22

5 marks
4 marks
3 marks
2 marks
1 mark