CSMOS

1. This rectangle has an area of $14 \mathrm{~m}^{2}$ and a length that is 5 m more than its width.
a Using length \times width $=$ area, write an equation.
b Solve your equation by expanding and subtracting 14 from
 both sides. Then use the Null Factor Law.
c Which of your two solutions is feasible for the width of the rectangle?
d Write down the dimensions (width and length) of the rectangle.
2. The product of a number and 13 less than the same number is 30 . Write an equation and solve to find the two possible solutions.
3. A square of side length 10 metres has a square of side length x metres removed from one corner.
a Write an expression for the area remaining after the square of side length x metres is removed. Hint: use subtraction.
b Find the value of x if the area remaining is to be $64 \mathrm{~m}^{2}$.

4. Use Pythagoras' theorem to find the value of x in these right-angled triangles.

5. A square picture is surrounded by a rectangular frame as shown. The total area is to be $320 \mathrm{~cm}^{2}$. Find the side length of the picture.

