Section One: Multiple Choice

5 marks

Attempt Questions 1-5

Allow about 10 minutes for this section

Write your answer on the paper provided.

1. What are the solutions to $3 x^{2}-7 x-1=0$?
(A)

$$
x=\frac{-7 \sqrt{37}}{6}
$$

(B) $x=\frac{-7 \pm \sqrt{61}}{6}$
(C) $x=\frac{7 \pm \sqrt{37}}{6}$
(D) $x=\frac{7 \pm \sqrt{61}}{6}$.
2. Which of the following is irrational?
(A) $\sqrt{289}$
(B) $\sqrt[3]{27}$
(C) $\sqrt{11}$
(D) $\frac{3}{7}$.
3. Which of the following is function?
(A)

(B)
(C)
(D)

4. Which of the following is true about the function $f(x)=2^{x}+2^{-x}$
(A) Even function
(B) Odd function
(C) Zero function
(D) Neither odd or even function.
5. Simplify $\sin \theta \sec \theta$.
(A) $\operatorname{cosec} \theta$
(B) $\sin ^{2} \theta$
(C) $\tan \theta$
(D) $\cot \theta$.

Section Two: Extended Response

Attempt Questions 1-5

Write your answer on the paper provided.
Show all working.

Question One: Methods in Algebra (13 Marks)
Marks
a) Expand and simplify: $3(2 x-1)-3(x+5)$.
b) Fully factorise: $x^{3}+5 x^{2}-9 x-45$.
c) Express $\frac{2 x-3}{6}-\frac{x-7}{15}$ as a single algebraic fraction.
d) Solve the equation : $\quad \frac{x-2}{x+2}=2-x$.
e) Fully simplify $\frac{x^{3}-64}{4-x} \div \frac{x^{2}+4 x+16}{5}$.
a) Fully simplify the following expressions:
i) $\sqrt{27} \times \frac{1}{3} \sqrt{3}$
ii) $\quad(2 \sqrt{5}+\sqrt{3})(7 \sqrt{3}+\sqrt{5})$
iii) $\sqrt{x^{3}}+\sqrt{x}-\sqrt{4 x}$.
b) Express $0.2 \dot{7}$ as a fraction in its simplest form without the use of a calculator.
c) Simplify the following by rationalising the denominator $\frac{\sqrt{5}}{4 \sqrt{5}+7}$.
d) Given that a, b, c and d are integgers, with b and d non-zero, simplify the average of \bar{b} and \bar{d}.
a) If $f(x)=x^{2}-3 x-40$ find $f(5)+f(-5)$
b) Draw separate neat sketches, labelling significant features in the following:
i) $x y=3$
ii) $\quad y=x^{2}+3 x-10$
c) State the domain and range for b) i) and b) ii).
d) A function isf flefixed by3the following:

$$
f(x)=\left[\begin{array}{l}
\sqrt{9-x^{2}} \text { for }-3<x<3 \\
x \text { for } x \geq 3 .
\end{array}\right.
$$

Copy and complete the table of values for $f(x)$, then sketch its graph.

x	-4	-3	-2	-1	0	1	2	3	4
y									

a) Evaluate $\left|(-3)^{2}-7 \times 2\right|$.
b) Solve for x given the inequation $19<7 x+5<75$. 2
c) \quad Solve $|2 x+1| \leq 9$.
d) Solve the inequality $x(x+7)(5-x)<0$. 3
e) On a number plane, graph the following regions: 5

$$
(x-1)^{2}+y^{2} \leq 16 \text { and } x-y+3 \geq 0
$$

And shade the intersection of the regions.

Question Five: Trigonometry (13 Marks)
a) If $0^{\circ} \leq \theta \leq 360^{\circ}$ find the values of θ given $\sec \theta=\frac{2}{\sqrt{3}}$
b) In the diagram below, use the Sine rule to find the length of $P Q$ to the nearest metre.

NOT TO SCALE
c) Given that the sides of a non right angled triangle are $6 \mathrm{~cm}, 11 \mathrm{~cm}$ and 15 cm :
i) Show that the smallest angle in the triangle is 20° to the nearest degrees.
ii) Find the area of the triangle, give your answer to 1 decimal place.
d) Prove that $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\sin ^{2} \theta$.

END OF EXAMINATION

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)

Examination solutions 2015 .

Multiple Choice
QI.

$$
\begin{align*}
& a=3 \quad b=-7 \quad c=-1 \\
& x=\frac{--7 \pm \sqrt{(-7)^{2}-(4 \times 3 \times-1)}}{2 \times 3} \\
& x=\frac{7 \pm \sqrt{49--12}}{6} \\
& x=\frac{7 \pm \sqrt{61}}{6} \tag{D}
\end{align*}
$$

Q2. Rational numbers can be expressed as a fraction.

$$
\sqrt{289}=\frac{17}{1} \quad 3 \sqrt{27}=\frac{3}{1}
$$

$\therefore \sqrt{11}$ is the only value which can not be expressed $a \leq a$ fraction.

Q 3 Use the vertical line test. A function has one y value for every x value.
(D)

QU.

$$
\begin{aligned}
f(-x) & =2^{-x}+2^{-x} \\
& =2^{-x}+2^{x} \\
& =f(x)
\end{aligned}
$$

When $f(x)=f(-x)$ it is an even function

Q5 $\sin \theta \times \frac{1}{\cos \theta}=\frac{\sin \theta}{\cos \theta}=\tan \theta$

$$
(c)
$$

Extended Response Question One.
a)

$$
\begin{align*}
& 3(2 x-1)-3(x+5) \\
= & 6 x-3-3 x-15 \tag{1}\\
= & 3 x-18 \tag{1}
\end{align*}
$$

b)

$$
\begin{align*}
& x^{3}+5 x^{2}-9 x-45 \\
& x^{2}(x+5)-9(x+5) \\
& \left(x^{2}-9\right)(x+5) \tag{1}\\
& (x+3)(x-3)(x+5) \tag{1}
\end{align*}
$$

The multiple choice questions were geverale, assured ven well by students. Question One is Reference to CHl of textbook.

Recognise Grouping and difference of 2 squares.

Extended Response Question Two.
a) (i)

$$
\text { (i) } \begin{align*}
& \sqrt{27} \times \frac{1}{3} \sqrt{3} \\
= & 3 \sqrt{3} \times \frac{1}{3} \sqrt{3} \\
= & 3 \tag{1}
\end{align*}
$$

$$
\begin{array}{ll}
\text { Hi: F. O. } & \text { L } \\
14 \sqrt{15}+10+21+\sqrt{15} \\
15 \sqrt{15}+31 & \text { (1) } \tag{1}
\end{array}
$$

(iii)

$$
\begin{align*}
& x \sqrt{x}+\sqrt{x}-2 \sqrt{x} \tag{i}\\
= & \sqrt{x}(x-1) \tag{i}
\end{align*}
$$

b)

$$
\text { Let } \begin{align*}
x & =0277777 \\
10 x & =2.77777 \\
100 x & =27.77777 \tag{1}\\
90 x & =25 \\
x & =\frac{25}{90}=\frac{5}{18} \tag{i}
\end{align*}
$$

c) $\frac{\sqrt{5}}{4 \sqrt{5}+7} \times \frac{4 \sqrt{5}-7}{4 \sqrt{5}-7}$

$$
\frac{20-7 \sqrt{5}}{80-49} \text { (1) }=\frac{20-7 \sqrt{5}}{31}
$$

Suggested solution (s)
comments
d) $\frac{\frac{a}{b}+\frac{c}{d}}{2}$
$\frac{\frac{a d+b c}{b d}}{2}$

$$
\frac{a d+b c}{2 b d}
$$

Many diducte attempt this question.

Extend Response Givestion 3,
a)

$$
\begin{align*}
& f(5)=5^{2}-3(5)-40=-30 \\
& f(-5)=(-5)^{2}-3(-5)-40=0 \tag{i}\\
& f(5)+f(-5)=-30 \tag{1}
\end{align*}
$$

b) (1)

many ousted asymptotes

- very par slater
nested Solutions, Marking Scheme and Markers' comments
Suggested solution (s)
comments
b) (ii)

$$
y=(x+5)(x-2)
$$

- poor skertel need a single smooth cure
- Vertex not shown.
C) bi) domain. all real x except.

$$
\text { When } x=0
$$

omitted $x \neq 0$
range: all real except when $y=0$ io
b(ii) domain: all real x (i)
range: all real $y \geqslant-12 \frac{1}{4}$
(1)
d)

x	-4	-3	-2	-1	0	1	2	3	4
y	4	4	$\sqrt{5}$	$\sqrt{8}$	3	$\sqrt{8}$	$\sqrt{5}$	3	4

very poorly drawn.

Extended Response Question Four
a) $|9-14|=|-5|=5$
b)

$$
\begin{gather*}
19<7 x+5<75 \\
14<7 x<70 \tag{1}\\
2<x<10
\end{gather*}
$$

subtract 5
(1) divide 7
C) $|2 x+1| \leqslant 9$

$$
\begin{align*}
|2 x+1| & \leqslant 9 \\
2 x+1 & \leqslant 9 \\
2 x & \leqslant 8 \\
x & \leqslant 4 \tag{1}\\
-5 & \leqslant x \leqslant 4 \tag{1}
\end{align*}
$$

$$
2 x+1 \geqslant-9
$$

$$
2 x \geqslant-10
$$

$$
x \geqslant-5
$$

only one answer $=5$
$|-5|$ and -5 was NOT correct and written in addition to 5 meant no mark.
check solution makes sense.

often only ore solution was given.

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
comments
d)

$$
x(x+7)(5-x)<0
$$

zeroes occur when $x=0 \quad x=-7 \quad x=5$. Imouk for (3 value

$$
x=0 \quad x=-7 \quad x=5
$$

When $x \rightarrow \infty \quad y \rightarrow-\infty$

$$
-7<x<0 \quad x>5
$$

e)

Many students did not test a point and shaded the incorrect region (see over page)

2 marks for graph of circle and correct region.
2 marks for graph of line and correct region
1 mark for correct intersection.

suggested Solutions, Marking Scheme and Markers' comments

Suggested solution (s)

Suggested Solutions, Marking Scheme and Markers' comments
Suggested solutions)
comments
Question Five.
a) $\frac{1}{\cos 6}=\sec \theta$

s	A^{2}
T	C^{r}

$$
\begin{align*}
& \therefore \cos \theta=\frac{\sqrt{3}}{2} \quad(1) \tag{1}\\
& \theta=30 \quad \theta=330 \tag{1}
\end{align*}
$$

b)

$$
\angle Q P R=50^{\circ}
$$

$$
\begin{aligned}
\frac{P Q}{\sin 70} & =\frac{300}{\sin 50} \\
P Q & =\frac{300 \sin 70}{\sin 50}=368 \mathrm{~m}
\end{aligned}
$$

c)
 smallest angle is opposite smallest side Sine Rule.

