Section One: Multiple Choice 5 marks Attempt Questions 1-5 Allow about 10 minutes for this section Write your answer on the paper provided.

1. What are the solutions to
$$3x^2 - 7x - 1 = 0$$

(A) $x = \frac{-7 \pm \sqrt{37}}{6}$
(B) $x = \frac{-7 \pm \sqrt{61}}{6}$
(C) $x = \frac{7 \pm \sqrt{37}}{6}$
(D) $x = \frac{7 \pm \sqrt{61}}{6}$.

2. Which of the following is irrational?

(A)
$$\sqrt{289}$$

(B) $\sqrt[3]{27}$
(C) $\sqrt{11}$
(D) $\frac{3}{7}$.

3. Which of the following is function?

?

- 4. Which of the following is true about the function $f(x) = 2^x + 2^{-x}$
 - (A) Even function
 - (B) Odd function
 - (C) Zero function
 - (D) Neither odd or even function.

- 5. Simplify $\sin\theta \sec\theta$.
 - (A) $\cos ec \theta$
 - (B) $\sin^2 \theta$
 - (C) $\tan \theta$
 - (D) $\cot \theta$.

Section Two: Extended Response Attempt Questions 1-5 Write your answer on the paper provided. Show all working.

Question One: Methods in Algebra (13 Marks)Marks

a) Expand and simplify:
$$3(2x-1)-3(x+5)$$
. 2

b) Fully factorise:
$$x^3 + 5x^2 - 9x - 45$$
.

c) Express
$$\frac{2x-3}{6} - \frac{x-7}{15}$$
 as a single algebraic fraction. 3

d) Solve the equation :
$$\frac{x-2}{x+2} = 2-x$$
. 3

e) Fully simplify
$$\frac{x^3 - 64}{4 - x} \div \frac{x^2 + 4x + 16}{5}$$
. 3

Marks

Question Two: Numbers and Surds (13 Marks) Start a new page

- a) Fully simplify the following expressions: i) $\sqrt{27} \times \frac{1}{3}\sqrt{3}$ ii) $(2\sqrt{5} + \sqrt{3})(7\sqrt{3} + \sqrt{5})$ iii) $\sqrt{x^3} + \sqrt{x} - \sqrt{4x}$.
- b) Express 0.27° as a fraction in its simplest form without the use of a calculator. 2
- c) Simplify the following by rationalising the denominator $\frac{\sqrt{5}}{4\sqrt{5}+7}$. 3
- d) Given that a, b, c and d are integers, with b and d non-zero, 2 simplify the average of \overline{b} and \overline{d} .

Question Three: Functions and Graphs (13 Marks)MarkStart a new page

a) If
$$f(x) = x^2 - 3x - 40$$
 find $f(5) + f(-5)$
b) Draw separate neat sketches, labelling significant features in the following:
i) $x y = 3$
ii) $y = x^2 + 3x - 10$.
c) State the domain and range for b) i) and b) ii).
4
d) A function is flatined by the following:
 $f(x) = \begin{bmatrix} \sqrt{9 - x^2} & \text{for } -3 < x < 3 \\ x & \text{for } x \ge 3. \end{bmatrix}$

Copy and complete the table of values for f(x), then sketch its graph.

x	-4	-3	-2	-1	0	1	2	3	4
у									

Question Four: Graphs and Inequations (13 Marks)MarksStart a new page

a)	Evaluate $\left \left(-3 \right)^2 - 7 \times 2 \right $.	1
b)	Solve for x given the inequation $19 < 7x + 5 < 75$.	2
c)	Solve $ 2x+1 \le 9$.	2
d)	Solve the inequality $x(x+7)(5-x) < 0$.	3
e)	On a number plane, graph the following regions: $(x-1)^2 + y^2 \le 16$ and $x-y+3 \ge 0$	5

And shade the intersection of the regions.

Marks

Question Five: Trigonometry (13 Marks) Start a new page

d)

a) If
$$0^{\circ} \le \theta \le 360^{\circ}$$
 find the values of θ given $\sec \theta = \frac{2}{\sqrt{3}}$ 3

b) In the diagram below, use the Sine rule to find the length of PQ to the nearest metre. **3**

NOT TO SCALE

c) Given that the sides of a non right angled triangle are 6 cm, 11 cm and 15 cm:

i)	Show that the smallest angle in the triangle is 20 $^{\circ}$ to the nearest degrees.	2
ii)	Find the area of the triangle, give your answer to 1 decimal place.	2
Prove	that $\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos^2\theta - \sin^2\theta$.	3

END OF EXAMINATION

Suggested solution(s)	comments
Yearly - Zunit Mathematics Half Yearly	
Examination solutions 2015.	
Multiple Choice	
	Take Care with
QI. a = 3 b = -1 C = -1	negative numbers
$\chi =7 \pm \sqrt{(-7)^2 - (4 \times 3 \times -1)}$	
2×3	
$x = 7 \pm \sqrt{49 - 12}$	
$\mathcal{X} = 7 \pm \sqrt{61} $	
6	
U.2. Kational numbers can be	
expressed as a machina.	
$\sqrt{289} = \frac{17}{1}$ $3\sqrt{27} = \frac{3}{1}$	
. IT is the only value which	
(an not be expressed as a	
fraction (c)	
03 Use the vertical line test.	
A function has one y value for	
every & value.	
(D)	

Suggested solution(s)	comments
$Q4. f(-x) = 2^{-x} + 2^{-x}$	
$= 2^{-x} + 2^{x}$	
=-f(x)	
When $f(x) = f(-x)$ it is an even	
function (A)	
Q5 $\sin 0 \times \frac{1}{\cos 0} = \frac{\sin 0}{\cos 0} = \tan 0$	The miltiple choin questions were generall
(C)	vell by students.
Extended Response Question One.	Question One
a) $3(2x-1) - 3(x+5)$	of textbook.
= 3x - 18 ()	
b) $x^{3}+5x^{2}-9x-45$ $x^{2}(x+5)-9(x+5)$ $(x^{2}-9)(x+5)$ ①	Recognise Grouping and difference of 2 Squares
$(\chi +3)(\chi -3)(\chi +3)$	

Suggested solution(s) comments			
c) $\frac{2x-3}{6} - \frac{x-7}{15}$	Some students failed to successfully		
$= \frac{5(2x-3)-2(x-7)}{30}$	charge the tractions to have a LCD of 30.		
$= \frac{10x - 15 - 2x + 14}{30}$	ect merks averded if correct simplifying after field ablerpt		
$= \frac{8x-1}{30}$	at cherrying tractions.		
d) $\frac{\chi - 2}{\chi + 2} = \frac{2 - \chi}{1} \qquad \chi \neq -2$	Recognise $(2-x)(x+2)$ = $(2-x)(2+x)$ Difference of 2 squares		
x-2 = (2-x)(x+2)	some struggled		
$x-2 = 4 - x^2$	to get to this step		
$\chi^2 + \chi - 6 = 0 \qquad (1)$	by eliminating the x+2		
(x+3)(x-2)=0	derominator toon the		
$\chi = -3 \chi = 2 ()$	J.		
$e)^{0}(x-4)(x^{2}+4x+16) = (x^{2}+4x+16) = (x^{2}+4x+16) = 5$			
$= \frac{(x-4)(x^{2}+4x+1b)}{(4-x)} \times \frac{(x-4)(x^{2}+4x+1b)}{(x^{2}+4x+1b)}$	Since $(4-x) = -1(x-4)$ Some students horgot diff- 2 cubes		
= -1 ×5	factorisation.		
= -5 ()			

.

instead solution(s)	comments
suggester source Augstion Two.	
Extended Ristonise Onesticity	
a) (1) (27 x 1/3 315 x 1/3 (1)	all v
111, F. O. I. L	
14/15 +10 +21 + /15 1	generally okr
15 15 +31 ()	
(iii) x 1 + 1 - 2.5 0	1 0 Sp (7 4
$= \sqrt{x}(x-i) \oplus$	many didn't factures
b) Let $x = 0277777$	
101 = 27.7777.0	
90x = 25 $x = \frac{25}{90} = \frac{5}{18}$ ()	Some ase their calculator. ! Oward
$\begin{array}{c} () \\ \hline 15 \\ \hline 45+7 \\ \hline 45+7 \\ \hline 45-7 \\ \hline \end{array} \\ \end{array} $	some x by 415+7 and some lefton
$\frac{20-7\sqrt{5}}{80-49} = \frac{20-7\sqrt{5}}{31}$	

,

in a colution(s)	comments
Suggesten solution(3)	
a) 9 + ÷	
D U	
2	
ad + bc	
io d	Many didubi
	formet this
2	a literap.
	question.
adth	
2bd	
Extendi Response Gluestian 3.	
(A) + (S) = G - 3(S) - 10 = -30	
$(1 c) (c)^2 (2 c) - 40 - 0$	
+(-5)=(-5)-5(-5)-10=0	
$C(x), ((x)) \rightarrow 0$	
+(5)++(-5)=-50	
	,
b) (1)	in our awatted
D) (1) 1 (0,3)	With Court
	asympons
(3,1)	· very par staten
(3,-1) X	- / (
(-1,-3)	
¥ *	

•

Suggested solution(s)	comments
Extended Response Gluestian Fo	or
a) $ 9-14 = -5 = 5$	only one answer = 5
b) $19 < 7x + 5 < 75$ 14 < 7x < 70 () subtract 2 < x < 10 () subtract	1-51 and -5 was Not correct and written in addition to 5 meant no 15 movel.
$C) 2x+1 \leq 9$	
$2x+1 \le 9 \qquad 2x+17)^{-5}$ $2x \le 8 \qquad 2x 7)^{-10}$ $x \le 4 \qquad x7)^{-5}$	d often only one solution was given.
$-5 \le x \le 4$ O check solution makes sense. -5 $+$ -5 $+$ $-x$.	

THGS Exam Feedback

Suggested solution(s)	comments
d) $\chi(\chi+7)(5-\chi) < 0$	
zeroes occur when x=0 x=-7;	x=5 Imorth for (3 va x=0 $x=-7$ $x=5$
Y Y	Imark for graph lote. If graphed incorrect
	e.c.f was a word
<>>×	for final mark.
v belan y-a	ZIX
-7 <x<0 td="" x75<=""><td></td></x<0>	
e)	
(1,-4)	Many students did not test a point and Shaded the incorrect region (see over page)
2 marks for graph of circle and correct region.	
2 morks for graph of line and correct region	
I mark for correct intersection.	

.

Suggested solution(s)	comments
C(ii) Area = $\frac{1}{2}$ ab Sin(Area = $\frac{1}{2} \times 11 \times 15 \times 5in20$ Area = $28 \cdot 2cm^{2}$	There is No Right Angle in the triangle.
d) LHS = $\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta}$	
since $\tan^2 6 + 1 = \sec^2 6$ LHS = $\frac{1 - \tan^2 6}{\sec^2 6}$	use LHS = RHS
$= \frac{1}{\sec^2 \theta} - \frac{\tan^2 \theta}{\sec^2 \theta}$ $= \cos^2 \theta - \frac{\sin^2 \theta}{\cos^2 \theta} - \frac{\sec^2 \theta}{\cos^2 \theta}$	
$= \cos^2 \Theta - \frac{\sin^2 \Theta}{\cos^2 \Theta} \times \frac{\cos^2 \Theta}{\cos^2 \Theta}$	
$= \cos^2 6 - \sin^2 6$ $= RHS.$	
$\frac{1-\tan^2 6}{1+\tan^2 6} = \cos^2 6 - \sin^2 6$	